
Enclave-based TEEs (Intel SGX)

Toward Process-Level TEEs with OS
Compatibility and a Minimal TCB

Achieve both compatibility and TCB minimization

Guojun Wu Keisuke Iida Satoru Takekoshi Takahiro Shinagawa
The University of Tokyo

{wu,iida,takekoshi}@os.is.s.u-tokyo.ac.jp shina@is.s.u-tokyo.ac.jp

 Background: Problems of Existing TEEs

 Proposal: Confidential Process — A New TEE Abstraction

Offer strong isolation with a small TCB

Strict code constraints cause compatibility issues
e.g., Enclaves cannot invoke system calls directly

VM-based TEEs (AMD SEV, Intel TDX)

Allow unmodified applications to run inside a TEE

Traditional guest OSes lead to bloated TCB size
Their broad attack surface has been exploited

Goal

Approach

Process-only TCB, eliminating guest OS stacks

Preserve compatibility by reusing system call

interface for host OS interaction

Confidential process

Syscall mediator
Runtime

Host OS kernel

User space

Kernel space

CVM

Host
System call interface

Custom VMM (Syscall proxy)

1

2

3

 Future Extensions Prototype Implementation
Content-based Encryption Avoidance
● Copying between shared and private pages is a bottleneck
● No encryption needed for data originating outside CVM
● Apply copy-on-write to avoid

redundant encryption

Shared
Pages
Shared
Pages
Shared
Pages

Shared
Pages
Shared
Pages
Private
Pages

Data copy

● Implemented confidential processes on AMD SEV-SNP
○ Using KVM to create a custom VMM

● Successfully run unmodified, simple Linux ELF programs
○ At startup, VMM loads program and runtime into CVM
○ Basic I/O system calls are supported
○ Memory management system calls are directly handled

within CVM

● Next step:
○ Adjust shared pages dynamically to accommodate large I/O
○ Add multi-thread support

Application

Large Guest OS

TEE (CVM)

Potential Vulnerabilities

Application

Enclave

OS

Run a single user-level process inside a CVM Application

(No guest OS)

TEE (CVM)

Host OS

Syscall proxy

System call interface

Design System call handling flow for confidential processes

1. Runtime writes system call arguments to shared pages
○ Shared pages are encrypted memory regions accessible to host
○ Data in I/O buffer are also written to shared pages

2. Custom VMM forwords system call to host kernel and writes
back result

3. System call mediator validates response and copies data into
memory process
○ Process memory always resides in encrypted private pages

Further reduce TCB
● Memory management code in runtime enlarges TCB
● Decouple privileged and non-privileged components
○ Run non-privileged component in a less privileged VMPL

Confidential Process

