Toward Process-Level TEEs with OS
Compatibility and a Minimal TCB

Guojun Wu Keisuke lida Satoru Takekoshi Takahiro Shinagawa g

The University of Tokyo
{wu,iida,takekoshi}@os.is.s.u-tokyo.ac.jp shina@is.s.u-tokyo.ac.jp

Background: Problems of Existing TEEs

Enclave-based TEEs (Intel SGX) VM-based TEEs (AMD SEV, Intel TDX)
o Offer strong isolation with a small TCB o Allow unmodified applications to run inside a TEE
6 Strict code constraints cause compatibility issues g Traditional guest OSes lead to bloated TCB size
e.g., Enclaves cannot invoke system calls directly Their broad attack surface has been exploited
: . a
Application M - TEE (CVM) @
N - ® | P N
L Enclave T Application
Y)¢< Large Guest OS | <— Potential Vulnerabilities
{ OS } i k o % j

Proposal: Confidential Process — A New TEE Abstraction

Goal Achieve both compatibility and TCB minimization TEE (CVM)
e .
Approach Run a single user-level process inside a CVM [Application }
_____ + 1 Confidential Process
O Process-only TCB, eliminating guest OS stacks " (Noguest0S)
N D B)
O Preserve compatibility by reusing system call R I AR R System call interface
interface for host OS interaction Syscall proxy
Host OS
Design { Confidential process } System call handling flow for confidential processes
SRR, SR & T User space 1. Runtime writes system call arguments to shared pages
3 Kernel space : :
- O Shared pages are encrypted memory regions accessible to host
Syscall mediator | o Data in I/O buffer are also written to shared pages
_ /
System call interface - - - -- F ___________ i _____________ ‘;V'V't 2. Custom VMM forwords system call to host kernel and writes
0S

back result
Custom VMM (Syscall proxy)

5 3. System call mediator validates response and copies data into

Memory process
o Process memory always resides in encrypted private pages

Prototype Implementation | Future Extensions

e Implemented confidential processes on AMD SEV-SNP Content-based Encryption Avoidance

O Using KVM to create a custom VMM e Copying between shared and private pages is a bottleneck
- ® No encryption needed for data originating outside CVM
® Apply copy-on-write to avoid

{ Host OS kernel }

® Successfully run unmodified, simple Linux ELF programs

o At s.tartup, VMM loads program and runtime into CVM . redundant encryption l Data copy l
o Basic /O system calls are supported g - .
o Memory management system calls are directly handled Shared Private
L i i Pages i Pages
within CVM - Further reduce TCB : :
® Next step: e Memory management code in runtime enlarges TCB
O Adjust shared pages dynamically to accommodate large /O . e Decouple privileged and non-privileged components

© Add multi-thread support i o Run non-privileged component in a less privileged VMPL

