Toward Process-Level TEEs with OS Compatibility and Minimal TCB

Guojun Wu* Keisuke lida*

Satoru Takekoshi*

Takahiro Shinagawa

The University of Tokyo

{wu,iida,takekoshi} @os.is.s.u-tokyo.ac.jp

Abstract

Background Traditionally, cloud users had to trust the in-
frastructure of cloud service providers to use their services.
However, demand is growing to safeguard workload data
even when provider systems or personnel cannot be fully
trusted. Trusted execution environments (TEEs) have gained
significant attention as a practical foundation for secure cloud
computing. By using CPUs as a root of trust, TEEs enforce
confidentiality and integrity for sensitive applications against
privileged software, enabling secure execution even under
a compromised OS or hypervisor. This protection relies on
hardware-based memory encryption, secure key management,
and remote attestation, which allows remote parties to verify
that their code and data are protected. These features have
made TEEs appealing for secure cloud computing, including
privacy-preserving analytics, machine learning inference, and
confidential containers.

Challenges However, existing TEEs face significant chal-
lenges. While enclave-based TEEs such as Intel SGX offer
strong isolation with a small trusted computing base (TCB),
they create major compatibility issues for existing systems.
Because enclaves impose strict constraints on the code that
can run inside them, such as disallowing system calls and
limiting library support, applications cannot execute on Intel
SGX without modification, which complicates their devel-
opment and verification. To address these limitations, recent
CPUs support confidential virtual machines (CVMs), which
allow unmodified OSes and applications to run inside a TEE.
Although this improves compatibility, it brings the entire guest
OS into the TEE, enlarging the TCB and increasing security
risks. Indeed, several attacks have exploited vulnerabilities in
guest OSes inside CVMs [7, 8].

Related Work Prior studies have explored two main di-
rections to address the trade-off between compatibility and
TCB size. One line of work focuses on running unmodified
applications inside SGX enclaves. For example, Haven [2],

*These authors are students.

shina@is.s.u-tokyo.ac.jp

SCONE [1], Panoply [10], and Occlum [9] extend compati-
bility by supporting standard OS abstractions, but they still
require dedicated toolchains, code annotations, or incur a
large TCB. Another line of work aims to reduce the TCB of
guest OSes in CVMs while retaining compatibility. Gramine-
TDX [5] employs a minimal library OS to shrink the attack
surface, but still includes tens of thousands of lines of priv-
ileged code. Striking a balance between compatibility and
TCB minimization thus remains a central challenge for prac-
tical trusted execution.

Proposal We propose a new abstraction of TEEs called a
confidential process, a process-level TEE that runs a single
user-level process inside a CVM. By placing only the process
in the TEE and reusing the system call interface to interact
with an untrusted host OS, our approach preserves compatibil-
ity without including the OS kernel in the TCB. System calls
are intercepted by a host proxy process outside the TEE, which
enforces sandboxing before forwarding them to the host OS.
To defend against lago attacks [3], a small in-TEE component
called the syscall mediator verifies results and copies returned
data into the process’s address space. This enables safe del-
egation of services such as file and network access while
keeping the kernel outside the TCB. Unlike enclaves, con-
fidential processes run unmodified binaries without enclave
runtimes or developer refactoring. Compared to CVMs, they
eliminate full guest OS stacks and significantly reduce trusted
code. Our design resembles Overshadow [4], but builds on a
modern CVM-based architecture with a much smaller TCB.
Overall, confidential processes combine the compatibility of
CVMs with the minimal TCB of enclaves, offering a practical
foundation for process-level trusted execution.

Implementation We are implementing confidential pro-
cesses on AMD SEV-SNP using KVM with a custom virtual
machine monitor (VMM). At startup, the VMM prepares a
process image containing the guest program and a lightweight
in-TEE runtime that includes a syscall mediator running in
privileged mode. The VMM then creates a CVM instance
via the KVM interface, loads the process image, and initial-

confidentail process

user space 1

kernel space 3

VMM (host proxy process)

OS kernel

Figure 1: System call handling flow for confidential processes:
(1) the runtime writes the system call arguments to shared
memory pages, (2) the VMM forwards the system call to the
host kernel and return the result, and (3) the syscall mediator
validates the response and copies data into process memory.

izes the virtual CPU. After this setup, the runtime sets up
the environment and transfers control to the program entry
point. When the process issues system calls, the runtime inter-
cepts the invocations and copies arguments from private pages
(encrypted memory regions) to shared pages (unencrypted
memory regions accessible to the host), then triggers a VM
exit. The VMM, acting as a host proxy process, forwards the
request to the host kernel, return the result, and restarts the
CVM. The in-TEE syscall mediator validates the response
and copies data into process private pages.

Figure [illustrates this system call handling flow. Our
approach resembles Noah [6], but differs in that the runtime
uses the CVM'’s shared pages to communicate with the host
proxy process. We are currently extending the implementation
to support a broader set of system calls.

Evaluation We conducted a preliminary evaluation by mea-
suring file I/O throughput using the read and write system
calls. Our evaluation ran on an AMD EPYC 9754 machine
with 128 GB of memory. With a buffer size of 2 KB, the
read and write throughputs of confidential processes were
173 MB/s and 143 MB/s, respectively. These values are 12-
fold and 8-fold lower than those of normal processes. Al-
though throughput increased with buffer size, it remained
considerably lower than that of normal processes. We fur-
ther measured the time spent inside the CVM during each
read/write system call. As buffer size increased, a growing
fraction of time was spent inside the CVM. With a buffer size
of 32 KB, about 80% of the total time for a single write system
call was spent inside the CVM. The remaining 20% covered
CVM exit/enter and host-side system calls. These results indi-
cate that the main bottleneck is data copying between private

and shared pages, which incurs overhead from encryption
and decryption. These preliminary findings highlight the need
for further optimization of data movement and cryptographic
operations to make confidential processes practical.

Discussion Data copying between private and shared pages
is a major challenge for confidential processes, as shown in
our evaluation. This problem is inherent to CVMs and there-
fore does not constitute a disadvantage of confidential pro-
cesses compared to conventional CVM architectures. How-
ever, reducing this overhead is essential for practical adoption.
We plan to make the number of shared pages in a CVM ad-
justable at runtime. Currently, this number is fixed when the
VMM creates the CVM instance and cannot be changed once
the CVM is launched. This limitation degrades performance
when an I/O request exceeds the capacity of the shared pages,
since the in-TEE runtime must split the request into multi-
ple smaller I/Os. Allowing the number of shared pages to
increase dynamically would avoid this situation and improve
performance.

We also plan to implement content-based encryption avoid-
ance. In the current implementation, data read via system calls
is always copied into process memory, incurring encryption
overhead. Since the data provided by the host is not confiden-
tial, encryption is unnecessary if the application only reads
the data. We can apply copy-on-write to avoid redundant en-
cryption: when the application attempts to write to a shared
page, we copy that page to a private page and update the page
table entry to point to the private page.

Memory management is another target of our optimization.
Unlike other system calls, memory-related system calls are
handled within the CVM. CVMs require guest page tables
to reside in private pages, which means only code inside the
CVM can modify them. If we delegated memory manage-
ment to the VMM, we would need another interface to update
guest page tables, enlarging the attack surface. It is there-
fore appropriate to handle memory management inside the
CVM. However, placing memory management code in the
in-TEE runtime enlarges the TCB. To optimize this, we plan
to leverage Virtual Machine Privilege Levels (VMPLs), a new
feature of SEV-SNP. We can decouple memory management
into privileged and non-privileged components and run the
latter at a less privileged VMPL, reducing the risk of memory
access patterns leaking sensitive data to shared pages.

Summary We presented confidential processes, a process-
level TEE that combines CVM compatibility with a minimal
TCB. Our design places only the application inside the TEE,
while an in-TEE syscall mediator securely delegates system
calls to an untrusted host. Implemented on AMD SEV-SNP,
our preliminary evaluation shows data copying as the main
bottleneck. We are exploring optimizations such as dynamic
shared page management and encryption avoidance to make
confidential processes practical for secure cloud computing.

References

[1]

[2]

[3

=

[5

=

[6

=

[7

—

[8

[t}

[9

—

[10]

S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. Stillwell, D. Goltzsche,
D. M. Eyers, R. Kapitza, P. R. Pietzuch, and C. Fetzer. Scone: Secure
linux containers with intel sgx. In Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
’16), pages 689-703, 2016.

A. Baumann, M. Peinado, and G. C. Hunt. Shielding applications from
an untrusted cloud with haven. In Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
'14), pages 267-283, 2014.

S. Checkoway and H. Shacham. Iago attacks: why the system call
api is a bad untrusted rpc interface. In Proceedings of the Eighteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’13, page 253-264, 2013.
X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Wald-
spurger, D. Boneh, J. Dwoskin, and D. R. Ports. Overshadow: a
virtualization-based approach to retrofitting protection in commodity
operating systems. In Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XIII, page 2—-13, 2008.

D. Kuvaiskii, D. Stavrakakis, K. Qin, C. Xing, P. Bhatotia, and M. Vij.
Gramine-tdx: A lightweight os kernel for confidential vms. In Pro-
ceedings of the 2024 on ACM SIGSAC Conference on Computer and
Communications Security, CCS *24, page 4598-4612, 2024.

T. Saeki, Y. Nishiwaki, T. Shinagawa, and S. Honiden. A robust and
flexible operating system compatibility architecture. In Proceedings of
the 16th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, VEE 20, page 129-142, 2020.

B. Schliiter, S. Sridhara, A. Bertschi, and S. Shinde. WeSee: Using
Malicious #VC Interrupts to Break AMD SEV-SNP. In Proceedings of
the IEEE Symposium on Security and Privacy (IEEE S&P ’24), pages
4220-4238, May 2024.

B. Schliiter, S. Sridhara, M. Kuhne, A. Bertschi, and S. Shinde. HECK-
LER: Breaking Confidential VMs with Malicious Interrupts. In Pro-
ceedings of the 33rd USENIX Security Symposium (USENIX Security
’24), pages 3459-3476, Aug. 2024.

Y. Shen, H. Tian, Y. Chen, K. Chen, R. Wang, Y. Xu, Y. Xia, and S. Yan.
Occlum: Secure and efficient multitasking inside a single enclave of
intel sgx. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS °20, page 955-970, 2020.

S. Shinde, D. Le Tien, S. Tople, and P. Saxena. Panoply: Low-TCB
Linux Applications With SGX Enclaves. In Proceedings of the Network
and Distributed System Security Symposium (NDSS) 2017, 2017.

