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2. Previous Work: On-chip DMA

- Frequent and repetitive data movement and transfer
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- memset() and memcpy()
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- Inter-process communication (IPC)
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- Data compression etc...
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- Intel Data Streaming Accelerator (DSA) [2]
- An on-chip memory operation offloading engine
- Supports memory move/fill and simple computations
- Supports per-process virtual addresses via using PASID
- Limitations
- Only supports simple memory-to-{device| memory} transfers
- No support for device-to-device transfers
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- Restricted to vendor-defined functions

3. Proposal: Context-aware Direct Memory Access (DMA) Engine

more advanced data operations to hardware

GOAL: Empower users and kernels to offload

(1) Inter-address-space data copy

- DMA engine understands virtual address spaces
- Integrated address-space manager and MMU/TLB
- Capability-based access control mechainsm

- OS kernel interfaces with the DMA engine for software context
- Provides page tables and access permissions
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4. Prototype Implementation

- Implemented a prototype PCle hardware on FPGA

- Alveo U50 board
- using verilog-pcie library [3]
- Successfully offloaded memset() and memcpy() in the

Linux kernel
- Offloaded zero-fill operation in Linux page allocator
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- Improved performance of

(2 Transparent Device-to-Device data movement

- Performs peer-to-peer DMA without device support
- E.g., send packets directly from NIC to GPU

- Maintains device topology and I/O memory map
- Require TLP-transparent bridging machnism
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5. Future Extensions

(1) More OS function offloading support
- Copy (on-write, between NUMA nodes, huge/nomal pages)
- Lock and transaction operations, device 1/O protection, etc.
(2 User-defined memory operation support
- Provide an execution environment for user-defined code

- E.g., run eBPF inside the DMA engine
3 Confidential virtual machine (CVM) support

alloc_pages()/free _pages()
- Next step: implement

address space manager
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- Challenge: How to perform key exchange?
- Between the DMA engine and CVMs

- ldea: Leverage CVM’s built-in key exchange mechanism
- Designed for live migration
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