
Toward Hardware-Assisted Kernel-Bypass
Data Movement and Transfer

References
[1] S. Kanev et al. Profiling a warehouse-scale computer. In Proc. ISCA 2015, page 158–169, 2015.
[2] R. Kuper et al. A quantitative analysis and guidelines of data streaming accelerator in modern intel xeon scalable processors. In Proc. 
ASPLOS 2024, pages 37–54, 2024.
[3] Forencich, A.: alexforencich/verilog-pcie: Verilog PCI express components, (online), available from 
⟨https://github.com/alexforencich/verilog-pcie⟩ (accessed 2025-07-04)

① Inter-address-space data copy
- DMA engine understands virtual address spaces

- Integrated address-space manager and MMU/TLB

- Capability-based access control mechainsm

- OS kernel interfaces with the DMA engine for software context

- Provides page tables and access permissions

GOAL: Empower users and kernels to offload more advanced data operations to hardware 

Keisuke Iida
The University of Tokyo

iida@os.is.s.u-tokyo.ac.jp

Takahiro Shinagawa
The University of Tokyo
shina@is.s.u-tokyo.ac.jp

 1. Background: Datacenter Tax 
- Frequent and repetitive data movement and transfer

- memset() and memcpy()

- Inter-process communication (IPC)

- Data compression etc...

- Consume 22-27% of CPU time in Google DC [1]
- Cause significant CPU overhead and cache pollution

 2. Previous Work: On-chip DMA

 3. Proposal: Context-aware Direct Memory Access (DMA) Engine 

- Intel Data Streaming Accelerator (DSA) [2]
- An on-chip memory operation offloading engine

- Supports memory move/fill and simple computations

- Supports per-process virtual addresses via using PASID

- Limitations
- Only supports simple memory-to-{device|memory} transfers

- No support for device-to-device transfers

- Restricted to vendor-defined functions
🔥

 5. Future Extensions 4. Prototype Implementation
- Implemented a prototype PCIe hardware on FPGA

- Alveo U50 board

- using verilog-pcie library [3]

- Successfully offloaded memset() and memcpy() in the 

Linux kernel
- Offloaded zero-fill operation in Linux page allocator

- Improved performance of

alloc_pages()/free_pages()

- Next step: implement

address space manager

② Transparent Device-to-Device data movement
- Performs peer-to-peer DMA without device support

- E.g., send packets directly from NIC to GPU

- Maintains device topology and I/O memory map

- Require TLP-transparent bridging machnism

NIC GPU

temp

① More OS function offloading support
- Copy (on-write, between NUMA nodes, huge/nomal pages)

- Lock and transaction operations, device I/O protection, etc.

② User-defined memory operation support
- Provide an execution environment for user-defined code

- E.g., run eBPF inside the DMA engine

③ Confidential virtual machine (CVM) support
- Challenge: How to perform key exchange?

- Between the DMA engine and CVMs

- Idea: Leverage CVM’s built-in key exchange mechanism

- Designed for live migration

Memory

NIC GPU

Device Manager
NIC at aa:bb.c 0xAAAA-0xBBBB
GPU at xx:yy.z 0xCCCC-0xDDDD

Data Path

Offloading
engine

App 2 App 3App 1

Kernel

Offloading
engineApp 1

App 2
App 3

Memory

PT

❌

address space
manager

PT

Access Controller

allow

deny

Perm

CPU-based vs. Offloaded approach elapsed time measurements for ⬆ 
alloc_pages() and __free_pages() for each page size.


