Toward Hardware-Assisted Kernel-Bypass
Data Movement and Transfer

CILCRIl

The University of Tokyo
llda@o0s.1s.s.u-tokyo.ac.jp

1. Background: Datacenter Tax

Takahiro Shinagawa

The University of Tokyo
shina@is.s.u-tokyo.ac.|p

2. Previous Work: On-chip DMA

- Frequent and repetitive data movement and transfer

<35

D 1 B

- memset() and memcpy()

B T PR e T .. .« ..,

- Inter-process communication (IPC)

LLLLLLLLLLL

S N Sy E ya s 8 8

o O
5 0 & 9 & S5 3

- Data compression etc...

(3]) 7

- Intel Data Streaming Accelerator (DSA) [2]
- An on-chip memory operation offloading engine
- Supports memory move/fill and simple computations
- Supports per-process virtual addresses via using PASID
- Limitations
- Only supports simple memory-to-{device| memory} transfers
- No support for device-to-device transfers

temp

- Restricted to vendor-defined functions

3. Proposal: Context-aware Direct Memory Access (DMA) Engine

more advanced data operations to hardware

GOAL: Empower users and kernels to offload

(1) Inter-address-space data copy

- DMA engine understands virtual address spaces
- Integrated address-space manager and MMU/TLB
- Capability-based access control mechainsm

- OS kernel interfaces with the DMA engine for software context
- Provides page tables and access permissions

App2 App3

App 1

Offloading
App L Access Controller engine
deny

App 2 allow ﬁ
App 3

address space

manager
Kernel PT

4. Prototype Implementation

- Implemented a prototype PCle hardware on FPGA

- Alveo U50 board
- using verilog-pcie library [3]
- Successfully offloaded memset() and memcpy() in the

Linux kernel
- Offloaded zero-fill operation in Linux page allocator

—e— Proposal —a— Normal

- Improved performance of

(2 Transparent Device-to-Device data movement

- Performs peer-to-peer DMA without device support
- E.g., send packets directly from NIC to GPU

- Maintains device topology and I/O memory map
- Require TLP-transparent bridging machnism

Memory

Device Manager
NIC at aa:bb.c OXxAAAA-OxBBBB
GPU at xx:yy.z OxCCCC-OxDDDD

Offloading
engine

Data Path

5. Future Extensions

(1) More OS function offloading support
- Copy (on-write, between NUMA nodes, huge/nomal pages)
- Lock and transaction operations, device 1/O protection, etc.
(2 User-defined memory operation support
- Provide an execution environment for user-defined code

- E.g., run eBPF inside the DMA engine
3 Confidential virtual machine (CVM) support

alloc_pages()/free _pages()
- Next step: implement

address space manager

Elapsed Time [Js]

—

- Challenge: How to perform key exchange?
- Between the DMA engine and CVMs

- ldea: Leverage CVM’s built-in key exchange mechanism
- Designed for live migration

References

AK 8K 16K 32K 64K 128K256K512K 1M 2M
Page Size [Byte]

CPU-based vs. Offloaded approach elapsed time measurements for /]
alloc_pages() and _ free pages() for each page size.

[1] S. Kanev et al. Profiling a warehouse-scale computer. In Proc. ISCA 2015, page 158—-169, 2015.

[2] R. Kuper et al. A quantitative analysis and guidelines of data streaming accelerator in modern intel xeon scalable processors. In Proc.
ASPLOS 2024, pages 37-54, 2024.

[3] Forencich, A.: alexforencich/verilog-pcie: Verilog PCI express components, (online), available from
(https://github.com/alexforencich/verilog-pcie) (accessed 2025-07-04)

