
Advanced Operating System

IntOS: Persistent Embedded Operating
System and Language Support for Multi-
threaded Intermittent Computing

48-256445 山上航輝



Background: Intermittent Computing

■ Energy harvesting system
◆ Capture necessary energy from the environment (e.g., solar, RF)
◆ No large battery
◆ IoT, wearables, sensor networks, etc.

■ Frequent power interruptions
◆ Program execution is intermittent
◆ Registers and SRAM states are lost (volatile)
◆ Crash consistency is needed

2 / 17



Problems

■ Embedded OSes are used in resource-constrained environments
◆ Multi-threading, semaphores, events, timers, etc.

■ Existing embedded OSes (e.g., FreeRTOS) are not designed to be
crash-consistent and do not support intermittent computing.

3 / 17



Related Work

■ Manual task decomposition (e.g., Alpaca [1] )
◆ Good performance
◆ Requires manual efforts

■ Automatic checkpointing (e.g., Ratchet [2] , ImmortalThreads [3] )
◆ Requires little or no annotations
◆ NVM only, slow and less energy-efficient compared to SRAM

[1] K. Maeng+, OOPSLA’17
[2] J. V. D. Woude+, OSDI’16
[3] E. Yıldız+, OSDI’22 4 / 17



Proposal

■ IntOS
◆ First embedded OS that supports multithreading and other core features,

designed for intermittent computing
◆ Combines transactional programming with a replay-and-bypass

mechanism, utilizing both volatile and non-volatile memories
◆ Rust-based programming model to ensure crash consistency

5 / 17



IntOS Design

■ Supports multithreading
◆ Priority-based preemptive

scheduling
■ Transactions
◆ Updates on persistent objects are

automatically logged
■ Replay-and-bypass
◆ Restore volatile states after crash
◆ Bypass committed transactions

and syscalls to avoid re-execution

6 / 17



Transactions

■ A thread includes transactions (TX1 and TX2) for persistent objects
■ A syscall contains transactions (TX3 and TX4) in the kernel

7 / 17



Replay-and-bypass Mechanism — Case 1

■ Undo: Rollback the uncommitted non-volatile states
■ Replay: Re-execute the thread to restore the volatile states
■ Bypass: Skip the committed transactions and syscalls

8 / 17



Replay-and-bypass Mechanism — Case 2

■ Undo: Rollback the uncommitted non-volatile states
■ Replay: Re-execute the thread to restore the volatile states
■ Bypass: Skip the committed transactions and syscalls

9 / 17



Replay-and-bypass Mechanism — Case 3

■ Undo: Rollback the uncommitted non-volatile states
■ Replay: Re-execute the thread to restore the volatile states
■ Bypass: Skip the committed transactions and syscalls

10 / 17



Multi-thread Crash Consistency

■ Kernel maintains multiple ready-lists and wait-lists

11 / 17



Multi-thread Crash Consistency

■ Recovers the ready task with the highest priority first
■ Other tasks will be recovered when they are scheduled later

12 / 17



Programming Model (enforced by Rust)

■ Persistent objects should not be accessed outside the transaction

■ References to persistent objects should not be returned from the
transaction

■ Persistent objects should not contain references to volatile objects

■ System calls should only be made within transactions

■ Locks should not be used inside transactions

13 / 17



Implementation

■ IntOS is implemented in Rust, based on the FreeRTOS kernel

■ Three per-thread replay tables that cache the return values
◆ User-level transactions
◆ Kernel-level transactions
◆ Syscalls

■ Three performance optimizations
◆ Loop optimization

• Use non-volatile iteration counter to avoid excessive replay window size
◆ Linked list optimization
◆ Undo-logging optimization

14 / 17



Evaluation

■ Seven micro-benchmarks (Activity recognition, Sensing, MLP, etc.) and
four macro-benchmarks

■ MSP430 and Apollo 4 as the testbeds

15 / 17



Performance overhead with power failure

Latency overhead w/ power failure Energy overhead w/ power failure

■ Lower latency and energy overheads compared to prior work (Ratchet)
■ Can make progress under frequent power failures

16 / 17



Summary

■ Introduced IntOS, an embedded OS designed for multi-threaded
intermittent computing on a battery-less energy-harvesting system

■ IntOS utilizes both volatile and non-volatile memories, ensuring crash
consistency through transactions and a replay-and-bypass mechanism

■ IntOS can make progress under frequent power failures at lower runtime
and energy overheads than prior works

■ IntOS ensures whole system consistency using Rust-based type system

17 / 17


	Background: Intermittent Computing
	Problems
	Related Work
	Proposal
	IntOS Design
	Transactions
	Replay-and-bypass Mechanism — Case 1
	Replay-and-bypass Mechanism — Case 2
	Replay-and-bypass Mechanism — Case 3
	Multi-thread Crash Consistency
	Multi-thread Crash Consistency
	Programming Model (enforced by Rust)
	Implementation
	Evaluation
	Performance overhead with power failure
	Summary

