[Advanced Operating System]

IntOS: Persistent Embedded Operating
System and Language Support for Multi-
threaded Intermittent Computing

48-256445 | _FfimrE

Background: Intermittent Computing

® Energy harvesting system
& Capture necessary energy from the environment (e.g., solar, RF)
¢ No large battery
& loT, wearables, sensor networks, etc.

® Frequent power interruptions ‘®- MCU Volatile Memory
& Program execution is intermittent b L Res L Co, AV

. . /. on-Volatile Memo

¢ Registers and SRAM states are lost (volatile) @ N e FRAM)

Harvester Capacitor

¢ Crash consistency is needed

2 /17

Problems

m Embedded OSes are used in resource-constrained environments
¢ Multi-threading, semaphores, events, timers, etc.

m Existing embedded OSes (e.g., FreeRTOS) are not designed to be
crash-consistent and do not support intermittent computing.

3/17

Related Work

m Manual task decomposition (e.g., Alpacali])
¢ Good performance
¢ Requires manual efforts

m Automatic checkpointing (e.g., Ratchet 2], ImmortalThreads [3])
& Requires little or no annotations
¢ NVM only, slow and less energy-efficient compared to SRAM

[1] K. Maeng+, OOPSLA'17
[2] J. V. D. Woude+, OSDI'16
[3] E. Yildiz+, OSDI’22 4 /17

Proposal

m IntOS
¢ First embedded OS that supports multithreading and other core features,

designed for intermittent computing

¢ Combines transactional programming with a replay-and-bypass
mechanism, utilizing both volatile and non-volatile memories

¢ Rust-based programming model to ensure crash consistency

5717

IntOS Design

m Supports multithreading

qéz Thread Transaction (TX;) TX: .. .
= Volatile objs || syscall ||Persistent objs | " ¢ Prlorlty—based preemptlve
" | scheduling

Priority-based Queues Events Semaphores :

Procoptive m Transactions

2 [T ion| [Iimer: ¢ Updates on persistent objects are

Crash Consistency automatically logged

Replay-and-bypass Undo-logging TXs

... m Replay-and-bypass
> | Mcu Volatile Memory Non-volatile Memory & Restore volatile states after crash
o (eg, stack, local var.) (eg, persistent objs.)

¢ Bypass committed transactions
and syscalls to avoid re-execution

6/17

Transactions

Th 1

Kernel

X,

>

m A thread includes transactions (TX1 and TX2) for persistent objects
m A syscall contains transactions (TX3 and TX4) in the kernel

[/17

Replay-and-bypass Mechanism — Case 1

Kernel @Qundo

State S0 Sc

B Undo: Rollback the uncommitted non-volatile states
B Replay: Re-execute the thread to restore the volatile states
m Bypass: Skip the committed transactions and syscalls

8 /17

Replay-and-bypass Mechanism — Case 2

@tx bypass ®tx bypass
@replay n resume
Th1 O—/TX, X, l syscall Ecrash
Kernel : ®:und0 —{TX HTX,
5 : f(undo
: u >
State So . ” N

B Undo: Rollback the uncommitted non-volatile states
B Replay: Re-execute the thread to restore the volatile states
m Bypass: Skip the committed transactions and syscalls

9/17

Replay-and-bypass Mechanism — Case 3

@bypass @ syscall bypass
@replay ‘ ‘ ﬁ Fesume
Thi O—TX\[—iTXs : syseall c,.ash

Kernel : Qundo ¢ Trx [{1x, |o :

State So S1 S25S¢

B Undo: Rollback the uncommitted non-volatile states
B Replay: Re-execute the thread to restore the volatile states
m Bypass: Skip the committed transactions and syscalls

10 /17

Multi-thread Crash Consistency

Th1 @/ TX,

Th2 waiting

Kernel — TX; TX4 -
running: Thl Th2
ready-list: @ Th 1
wait-list: Th 2 @
-

B Kernel maintains multiple ready-lists and wait-lists

11 /17

Multi-thread Crash Consistency

IIIIIIlllllllllIIlllIllIIIIIIIIIIIIIIIIllIIll?IIlllIllllIIllll!

Th1 Q— TXiHTX; : preempted :
low priority

llllIIIIlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII:IlllllIllllllllll:

(® undo|(not started) [

Th2 waiting o— TXSE crash
high prigity O wpeate: b
Kernel : —TX; TX4 -6 Qundo
:@replay :@replay
: Task 1 (not started) i Task 2 first

m Recovers the ready task with the highest priority first

m Other tasks will be recovered when they are scheduled later
12 /17

Programming Model (enforced by Rust)

m Persistent objects should not be accessed outside the transaction

m References to persistent objects should not be returned from the
transaction

m Persistent objects should not contain references to volatile objects
m System calls should only be made within transactions

m Locks should not be used inside transactions

13 /17

Implementation

m IntOS is implemented in Rust, based on the FreeRTOS kernel

m Three per-thread replay tables that cache the return values
¢ User-level transactions
& Kernel-level transactions
& Syscalls

m Three performance optimizations
¢ Loop optimization
- Use non-volatile iteration counter to avoid excessive replay window size
¢ Linked list optimization
¢ Undo-logging optimization

14 /17

Evaluation

m Seven micro-benchmarks (Activity recognition, Sensing, MLP, etc.) and
four macro-benchmarks
m MSP430 and Apollo 4 as the testbeds

15717

Performance overhead with power failure

4.0
£35
=30
$25
w
- 2.0
(O]
N15
£1.0
50.5
0.0

m Lower latency and energy overheads compared to prior work (Ratchet)

No Failure

10ms

F

Bl execution - re-execution Il recovery

Ratchet

5ms
ims

I

&
Q’\/\

it

R S R

Latency overhead w/ power failure

N ™
\a V{o

(9<<’

4. 0- No Failure

iliiJiiJ

>3 5
63.0
C
w25
°
g20
gl.S
51'0
Z0.5
0.0

S

] A Q N
NN ‘o S ~
Q A g &

Energy overhead w/ power failure

m Can make progress under frequent power failures

(;>(<’

e 10ms B 5ms Bl 1ms B Ratchet

O &
é"«é\

16 /17

Summary

® Introduced IntOS, an embedded OS designed for multi-threaded
iIntermittent computing on a battery-less energy-harvesting system

m IntOS utilizes both volatile and non-volatile memories, ensuring crash
consistency through transactions and a replay-and-bypass mechanism

m IntOS can make progress under frequent power failures at lower runtime
and energy overheads than prior works

m IntOS ensures whole system consistency using Rust-based type system

17 /17

	Background: Intermittent Computing
	Problems
	Related Work
	Proposal
	IntOS Design
	Transactions
	Replay-and-bypass Mechanism — Case 1
	Replay-and-bypass Mechanism — Case 2
	Replay-and-bypass Mechanism — Case 3
	Multi-thread Crash Consistency
	Multi-thread Crash Consistency
	Programming Model (enforced by Rust)
	Implementation
	Evaluation
	Performance overhead with power failure
	Summary

