
Caladan: Mitigating Interference at
Microsecond Timescales

東京大学 品川研究室
呉 国駿

1

オペレーティングシステム特論 輪講 2025-06-12

Background

2

Minimizing tail latency is critical

Distributed System

Client Request

● End-to-end response time is
determined by tail latency

● Tail latency strongly affects the
quality of service

Background

3

Balance latency with datacenter efficiency

Pack several tasks together on the same machine

Background

4

Tasks compete over shared CPU resources

Cores Last level cache Memory bandwidth

Background

5

Prioritize latency-critical tasks when interference is detected

Cores Last level cache Memory bandwidthCores Last level cache Memory bandwidth

Latency-critical
tasks

Best-effort
tasks

Background

6

● Avoid performance regression in LC tasks
● When interference is detected,

○ throttle BE tasks
○ assign additional resources to LC tasks

Challenge

7

Abrupt changes in resource usage abruptly increase interference

Periodic GC increases memory
bandwidth usage, causing
memcached (LC task) to reach a
1000× higher tail latency than
normal.

Challenge

8

Abrupt changes in resource usage are common
● Application load can be bursty at microsecond-scales

○ Network traffic in Google’s datacenters
○ Thread wakeups in Microsoft’s Bing service

● Many applications also exhibit phased resource usage
○ Garbage collection
○ Compression, compilation

Observation: To prevent the latency from increasing by 50 µs, the system
has to mitigate interference within 100 µs.

Existing solutions

9

Resource partitioning technology

● Intel’s Cache Allocation Technology (CAT)
● Intel’s Memory Bandwidth Allocation (MBA)
● Dedicating cores
● Disable hyperthreading

Last level cache

Reserved for specific cores

…way way way way way way

Existing solutions

10

Systems based on resource partitioning fail to react quickly

● Statically assigning enough resources prevents efficient CPU
utilization

● Making dynamic adjustments to partitions takes many seconds to
converge to the right configuration

Much longer than 100μs

Proposal

11

Manage interference exclusively by adjusting core allocations

Resource partitioning is not necessary. What really needed are:

● Fast interference detection
○ Identify the task and contented resource within microsecond

timescales

● Scalability regarding core count and task count
○ Keep the overhead from Caladan low

Caladan’s Design — Toward Fast Interference Detection

12

A dedicated scheduler core polls control signals every 10μs

scheduler core

remote cores running tasks

● Queueing delays
● Request processing times
● LLC miss rates
● Idle notices

13

A dedicated scheduler core polls control signals every 10μs

scheduler core

remote cores running tasks

DRAM controller

● Global memory bandwidth
usage

Caladan’s Design — Toward Fast Interference Detection

14

Hyperthread Controller

An LC task exceeds the processing
time threshold

The controller bans the use of the
sibling hyperthread

How the gathered control signals are used

Caladan’s Design — Toward Fast Interference Detection

15

Memory Bandwidth Controller

Global memory bandwidth crosses a
saturation threshold

The controller attributes the increased
usage to a specific task by relying on
LCC miss rates

The controller revokes one core from
the worst offending task

How the gathered control signals are used

Caladan’s Design — Toward Fast Interference Detection

16

How the gathered control signals are used

Top-level Core Allocator

An LC task experiences queueing
delays above the threshold

Add cores to the task in a way that
satisfies the controller constraints
(A preemption may occur)

Caladan’s Design — Toward Fast Interference Detection

17

How the gathered control signals are used

Top-level Core Allocator

When a task yields a core voluntarily,
immediately tries to grant the core to
another task

Caladan’s Design — Toward Fast Interference Detection

18

KSCHED Kernel Module accelerates scheduling and signal gathering

Caladan’s Design — Toward Scalability

● Linux Kernel system call interface has limitations in performance
● With KSCHED, the scheduler core can effectively

○ Preempt an existing task and wake up a new task
○ Idle cores
○ read control signals

19

Caladan’s Design — Toward Scalability

Use shared memory for communication between
the scheduler and remote cores

● KSCHED in remote cores writes
○ LCC miss rates
○ Idle notices

● Runtime writes
○ Queueing delays
○ Processing times

● Scheduler writes commands for
the remote KSCHED to execute,
including
○ Wake up a new task
○ Idle the core

20

Caladan’s Design — Toward Scalability

KSCHED optimizations

● Leveraging the ability of the interrupt controller to send multiple
Inter-processor Interrupts (IPIs) at once
○ Sending IPIs are the most expensive operations

2. Pass a list of cores to send IPIs

1. Write commands

3. Send multiple IPIs at once

21

Caladan’s Design — Toward Scalability

KSCHED optimizations

● KSCHED’s commands are issued asynchronously
○ The scheduler can perform other work while waiting for the commands to

complete

Asynchronous Interface

22

Caladan’s Design — Toward Scalability

KSCHED optimizations

● Offload scheduling work to remote cores, such as
○ Sending signals to tasks
○ Affinitizing tasks to cores

Remote cores also does scheduling work

23

Caladan’s Design

● Address the challenge of fast interference detection by
○ Carefully selecting control signals
○ Dedicating a core to monitor these signals and take action to

mitigate interference

● Address the challenge of scalability by
○ Introducing a Linux Kernel module named KSCHED

24

Evaluation

Baseline: state-of-the-art partitioning-based system, Parties [ASPLOS ‘19]
● Adjusts cores and last level cache partitions
● 500ms decision intervals, 10-20 seconds convergence

Experiment 1. Colocating Memcached with swaptions-GC
(LC task) (BE task)

25

Evaluation

Memcached’s latency at 99.9th percentile
↓ Lower is better

Reaches 580ms Maintain 50μs

26

Evaluation

BE task’s throughput
↑ Higher is better

Throttles BE task after GC has completed

27

Evaluation

● Caladan was able to maintain low tail latency for all 3 LC tasks under
varying load and interference

● Core reallocations occur up to 230,000 times per second

Experiment 2. Colocating many tasks (3 LC tasks and 2 BE tasks)

28

Discussion regarding compatibility

● Applications need to use Caladan’s runtime
○ Partial compatibility layer can help

● LC tasks are recommended to expose concurrency by spawning
either a thread per connection or a thread per request
○ Applications that multiplex TCP connections per thread require

changes to their architecture

29

Summary

● Present an interference-aware CPU scheduler, called Caladan

● Caladan consists of
○ A dedicated scheduler core that polls control signals and make a scheduling

decision
○ A Linux Kernel module named KSCHED, which helps achieve better scalability
○ A custom runtime that exposes task concurrency and load

● Caladan manages interference exclusively by core reallocations

● Caladan can mitigate interference at microsecond timescales

30

References

Joshua Fried et al. Caladan: Mitigating Interference at Microsecond Timescales. In Proc. 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20).

